
1

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Application of Advanced Multi-Core Processor Technologies
to Oceanographic Research

Mark R. Abbott

104 CEOAS Administration Building
College of Earth, Ocean, and Atmospheric Sciences

Oregon State University
Corvallis, OR 97331-5503

phone: (541) 737-5195 fax: (541) 737-2064 email: mark@coas.oregonstate.edu

Grant Number N000141110104
Grant Number N000141210298

http://www.ceoas.oregonstate.edu

LONG-TERM GOALS

Improve our ability to sense and predict ocean processes, utilizing state-of-the-art information
processing architectures.

OBJECTIVES

Next-generation processor architectures (multi-core, multi-threaded) hold the promise of delivering
enormous amounts of compute power in a small form factor and with low power requirements.
However, new programming models are required to realize this potential. Our objectives are to deploy
data processing and vehicle control systems onto a variety of “systems on a chip” (SOC) to provide
more autonomous functionality.

APPROACH

The overarching theme of this work relates to the application of advanced heterogeneous processors in
an embedded environment to high bandwidth signal processing and vehicle autonomy. Our previous
work included the development of a task dispatcher model for rapid development of signal processing
applications, scheduling tasks, and a graphical programming language. We have focused on a range of
power-constrained systems and development environments, including an inexpensive consumer-grade
drone. We are also integrating new approaches to user interfaces to these environments.

WORK COMPLETED

In the last year, we have continued development on the compute device scheduling system. The in-
progress and planned work includes porting the agent application to Linux, enhancing the local
scheduling facilities, and supporting embedded applications. The result of this work will enable greater
support for compute hardware and an increased ability to embed the scheduler in vehicles. The arc of
our previous work has been to generalize the first generation scheduler from local scheduling on the
Cell/B.E. to heterogeneous cluster scheduling and to improve ease of use through a graphical user
interface. In the last year we started the work of bringing these enhancements back to locally

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 SEP 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Application of Advanced Multi-Core Processor Technologies to
Oceanographic Research

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Oregon State University,College of Earth, Ocean, and Atmospheric
Sciences,104 CEOAS Administration Building,Corvallis,OR,97331-5503

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

scheduled workflows and custom platforms (in their current state, most embedded systems are more
like the Cell/B.E. than commodity compute systems). Furthermore, we are addressing fault tolerance,
low power, and latency management to improve vehicle-readiness.

By porting the scheduler agent to the Linux operating system we were able to dramatically increase the
reach of our scheduling system. The vast majority of computation-oriented co-processors are designed
to work on Linux systems, and Linux is the most common OS for embedded systems. In the past year,
we have been systematically redesigning the major portions of the compute scheduling agent to not
only support Linux, but to be as cross-platform as practical. Our choice to use industry standards such
as XML, OpenCL and Bonjour proved to be a good decision, as it has reduced the number of modules
that we have had to restructure. We are aware of the delicacy of the intellectual property landscape
surrounding Linux, and have taken pains to ensure that our product is unencumbered by “viral”
licenses that would require reciprocal code sharing.

In addition to supporting a greater breadth of platforms, we are improving the handling of real-time
sensor data on power-constrained systems. The existing implementation of the scheduler is optimized
for dynamically changing user applications using line power. An example of the consequences of
these optimizations is that the scheduler will benchmark a new compute kernel implementation
immediately, and on every compute element available. This is a necessary action to have complete and
up to date compute cost metrics, but can be time and power consuming. Furthermore, the existing
scheduler attempts to maximize the computational throughput of the cluster. There are cases where the
most important metric of a system is latency, and even cases where minimizing power draw is the most
important goal. In the past year, we have been working on designing the models and algorithms that
have the flexibility to schedule using the metrics outlined above, including whether, and to what
extent, these metrics can be combined and prioritized automatically.

We tested our concepts on two control platforms for a Parrot AR Drone. The first platform is based on
a Netduino microcontroller and coded in the .NET Micro Framework. This controller is capable of
communicating with the Parrot AR Drone via the serial port on the bottom of the drone. Using this
port, the controller can take off the quadricopter, land it, and have general control over the drone while
it is in operation. This microcontroller is also using sensor input (GPS and compass) to determine the
location and heading of the drone and relay that information over a wireless network with a wireless
communication device or over a wired network if plugged in.

The second platform for controlling the drone is based on a Raspberry PI microcontroller running a
version of the Linux operating system. This controlled was coded in C++ and is also capable of
performing all the functions of the .NET microcontroller, with the added benefit of being portable
between other Linux based microcontrollers (for example, the Beagle Bone platform). All the sensor
libraries are general and could be reused for other projects as needed. Another benefit of this Linux
based platform is that the microcontrollers are generally faster than the .NET version, allowing for
more computation to be performed on the microcontroller itself, but with the drawback that it does
consume more power. There are some additional features included in the C++ version of the code that
are not available in the .NET version. The first allows for remote control in which users can give the
microcontroller a set heading and using the built in compass, the controller will have the drone
maintain that heading. There are also additional TCP communications stack capabilities included with
this microcontroller as the full TCP stack is a large overhead for the slower .NET microcontroller.

3

Both of these platforms utilize a program running on the Parrot AR Drone to relay messages to the
built in control system of the drone. This program takes a command packet from the microcontroller
through the serial port of the drone, and translates it to a message the drone will understand. Once this
conversion is done, it sends the message to the specific socket on the drone for that command. This
allows us to not have to write our own control software for the drone and continue to use all the built in
features of the drone. As manufacturer updates their control software, our implementation will receive
those same benefits. This also allows us to use the sensors in the drone in our own implementations.

RESULTS

In support of the task of developing an embedded scheduler, and making it appropriate for use in
vehicles, we have collected a representative sample of development kits across a variety of
architectures, brands, and models. Each instruction set architecture (ISA) and processor is designed
within the constraints set by physics, computation theory, and often, economics. The best solutions to
the problems of chip selection vary according to the target application. It is vital that we understand
how the compromises chosen by vendors affect our goals of high-performance on-vehicle
computation. We have included a table of platforms that we have acquired according to their rough
power envelope.

Power Envelope Architecture Name OpenCL

< 500 mW

ARM M series TI Stellaris
ST Micro STM32
NXP LPC series

No

Proprietary Microchip PIC32/DSPIC No

> 500 mW;
< 5 W

ARM Cortex TI OMAP
TI Sitara
Broadcom BCM2835

Varies

FPGA Xilinx Spartan
Altera Cyclone

Possible

The C++ implementation of the drone controller program has a Haskell-based library allowing remote
control of the Parrot AR Drone using a functional programming language. This library allows a user to
describe a general path (Straight line, or curved path, from latitude/longitude to latitude/longitude) and
time (ex. Start time 0:01:03 end 0:02:03 would be a 1 minute flight path) of the waypoints that the user
would like the drone to use. With this information, the program will calculate a path and speed for the
drone to follow to reach the waypoints at the given times. In the event the drone is off course (due to
wind or other problem), this library will attempt to make course corrections and return the Parrot to the
correct course.

In order to accomplish the above parts of the Parrot AR Drone, we developed a robust communications
protocol allowing the drone to receive commands and relay information from a base station or other
device. This protocol needed to be able to detect errors in transmission as well as be expandable in the
event we needed to add commands or attach new sensors. The protocol we developed uses a simple
checksum to ensure correctness of data, and the library in place allows us to easily encapsulate the data

with the given checksum and header information. In the event we need to expand the protocol, we can
simply add a new header tag and then create the new data packet and the rest of the communication
(checksum creation and data transmission is done with the current libraries).

On the data communication portion of the controller, there is an API in place enabling users to
subscribe to sensor data or query individual sensors. Due to limitations in processing capacity of the
microcontroller and not wanting to take away from compute cycles, only one person can subscribe to
the data at a given time, but that data could be sent to a relay station which could allow for more
subscriptions or push updates as needed. There are two ways to retrieve data from the microcontroller,
either through subscriptions or with direct queries. The direct query is simply a request for data from a
specific sensor and the control will respond with the data. The subscription portion allows for
subscriptions at given time intervals, or whenever the data is updated (not all sensors allow for
subscribing to updates since they are updated often and would create a large overhead on the device for
transmission).

For central data storage, a memcached instance running a high performance parallel version of
memcached allowing for over one million requests per second has been developed, as well as a ZFS
file system for archiving the data. We are currently developing communication, caching, and archiving
procedures. A protocol will also need to be developed to allow many users to locate and utilize this
data quickly and simultaneously.

A user interface was developed showing how data could be subscribed to or queried as needed from
the controller. This interface is simple, subscribing to a GPS feed from the controller and displaying
the drone location on a Bing maps interface, or allowing the user to see the current heading and
acceleration of the Parrot AR Drone on request. This implementation is done in .NET and implements
all the libraries needed to communicate with the controllers (checksum and packet decoding). The
current implementation is being developed for use on large touchscreen devices.

In addition to the previous sensors used in the controller implementation, other libraries have been
developed to use a barometric pressure sensor, a temperature and humidity sensor, an accelerometer,
gyroscope, and magnetometer. Currently, these sensors can be read using a Beagle Bone and stored off
to a log file. Work with these sensors is being done to create a low cost IMU for the microcontrollers
on the drone using these sensors.

IMPACT/APPLICATIONS

We believe that the best chance of success for long duration and computationally intensive missions is
by developing a heterogeneous system with a suite of processors spanning the power consumption
spectrum. The expectation is that many tasks are not computationally intensive most of the time, but
can peak dramatically from time to time. It would be advantageous to power a relatively small
processor to handle only what must be processed in real time. When a burst of demand occurs, the
system could power-on the more expensive and powerful processor to handle the increased demand,
powering it down when complete. Furthermore, in the case where sensor data is collected, but real-
time response isn’t required and if the throughput is somewhat less than the capability of the processor,
it would be better to keep the processor in a low power state most of the time and process backlogged
data in a burst, rather than as a trickle.

5

RELATED PROJECTS

None

